Package: targeted 0.6

targeted: Targeted Inference

Various methods for targeted and semiparametric inference including augmented inverse probability weighted (AIPW) estimators for missing data and causal inference (Bang and Robins (2005) <doi:10.1111/j.1541-0420.2005.00377.x>), variable importance and conditional average treatment effects (CATE) (van der Laan (2006) <doi:10.2202/1557-4679.1008>), estimators for risk differences and relative risks (Richardson et al. (2017) <doi:10.1080/01621459.2016.1192546>), assumption lean inference for generalized linear model parameters (Vansteelandt et al. (2022) <doi:10.1111/rssb.12504>).

Authors:Klaus K. Holst [aut, cre], Benedikt Sommer [aut], Andreas Nordland [aut]

targeted_0.6.tar.gz
targeted_0.6.zip(r-4.5)targeted_0.6.zip(r-4.4)targeted_0.6.zip(r-4.3)
targeted_0.6.tgz(r-4.4-x86_64)targeted_0.6.tgz(r-4.4-arm64)targeted_0.6.tgz(r-4.3-x86_64)targeted_0.6.tgz(r-4.3-arm64)
targeted_0.6.tar.gz(r-4.5-noble)targeted_0.6.tar.gz(r-4.4-noble)
targeted_0.6.tgz(r-4.4-emscripten)targeted_0.6.tgz(r-4.3-emscripten)
targeted.pdf |targeted.html
targeted/json (API)
NEWS

# Install 'targeted' in R:
install.packages('targeted', repos = c('https://kkholst.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/kkholst/targeted/issues

Pkgdown site:https://kkholst.github.io

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

causal-inferencedouble-robustestimationsemiparametric-estimationstatisticsopenblascppopenmp

6.86 score 10 stars 1 packages 30 scripts 751 downloads 46 exports 27 dependencies

Last updated 9 days agofrom:c8f5d1dc19. Checks:1 OK, 1 NOTE, 7 FAILURE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 21 2025
R-4.5-win-x86_64OUTDATEDDec 25 2024
R-4.5-linux-x86_64NOTEJan 21 2025
R-4.4-win-x86_64OUTDATEDDec 25 2024
R-4.4-mac-x86_64OUTDATEDDec 25 2024
R-4.4-mac-aarch64OUTDATEDDec 25 2024
R-4.3-win-x86_64OUTDATEDDec 25 2024
R-4.3-mac-x86_64OUTDATEDDec 25 2024
R-4.3-mac-aarch64OUTDATEDDec 25 2024

Exports:aipwaleanatecalibratecalibrationcatecate_linkcrrcvdesignestimate_truncatedscoreexpand.listisoregwMLml_modelNBNB2nondomoffsetspavapredictorpredictor_gampredictor_glmpredictor_glmnetpredictor_grfpredictor_grf_binarypredictor_halpredictor_isoregpredictor_slpredictor_xgboostpredictor_xgboost_binarypredictor_xgboost_countpredictor_xgboost_coxpredictor_xgboost_multiclassRATERATE.survriskregriskreg_censriskreg_fitriskreg_mlescoringSLsoftmaxsolve_odespecialsspecify_ode

Dependencies:clicodetoolsdata.tabledigestfuturefuture.applyglobalslatticelavalistenvMatrixmetsmvtnormnloptrnnlsnumDerivoptimxparallellypracmaprogressrR6RcppRcppArmadillorlangSQUAREMsurvivaltimereg

Average Treatment Effects

Rendered fromate.Rmdusingknitr::rmarkdownon Jan 21 2025.

Last update: 2025-01-21
Started: 2025-01-21

Conditional Average Treatment Effects (cate)

Rendered fromcate.Rmdusingknitr::rmarkdownon Jan 21 2025.

Last update: 2025-01-21
Started: 2025-01-21

Estimating a relative risk or risk difference with a binary exposure

Rendered fromriskregression.Rmdusingknitr::rmarkdownon Jan 21 2025.

Last update: 2025-01-21
Started: 2025-01-21

targeted::ode_solve: Solving Ordinary Differential Equations

Rendered fromode.Rmdusingknitr::rmarkdownon Jan 21 2025.

Last update: 2025-01-21
Started: 2025-01-21

Readme and manuals

Help Manual

Help pageTopics
AIPW estimatoraipw
Assumption Lean inference for generalized linear model parametersalean
AIPW (doubly-robust) estimator for Average Treatement Effectate
Calibration (training)calibrate calibration
calibration class objectcalibration-class
Conditional Average Treatment Effect estimationcate
Conditional Relative Risk estimationcate_link
cross_validated class objectcross_validated cross_validated-class
Conditional Relative Risk estimationcrr
Cross-validationcv
Extract design matrixdesign
Estimation of mean clinical outcome truncated by event processestimate_truncatedscore
Create a list from all combination of input variablesexpand.list
ML modelML
R6 class for prediction modelsml_model predictor predictor_gam predictor_glm predictor_glmnet predictor_grf predictor_grf_binary predictor_hal predictor_isoreg predictor_xgboost predictor_xgboost_binary predictor_xgboost_count predictor_xgboost_cox predictor_xgboost_multiclass
Naive BayesNB NB2
NB class objectNB-class
Find non-dominated points of a setnondom
Pooled Adjacent Violators Algorithmisoreg isoregw pava
Prediction for kernel density estimatespredict.density
Predictions for Naive Bayes Classifierpredict.NB
Superlearner (stacked/ensemble learner)predictor_sl superlearner
Responder Average Treatment EffectRATE
Responder Average Treatment EffectRATE.surv
Risk regressionriskreg riskreg_fit riskreg_mle
Binary regression models with right censored outcomesriskreg_cens
Predictive model scoringscoring
SuperLearner wrapper for ml_modelSL
Softmax transformationsoftmax
Solve ODEsolve_ode
Extract model component from design objectoffsets offsets.design specials specials.design weights.design
Specify Ordinary Differential Equation (ODE)specify_ode
targeted class objectate.targeted riskreg.targeted targeted-class
Signed intersection Wald testtest_intersectsignedwald