Package: targeted 0.6
targeted: Targeted Inference
Various methods for targeted and semiparametric inference including augmented inverse probability weighted (AIPW) estimators for missing data and causal inference (Bang and Robins (2005) <doi:10.1111/j.1541-0420.2005.00377.x>), variable importance and conditional average treatment effects (CATE) (van der Laan (2006) <doi:10.2202/1557-4679.1008>), estimators for risk differences and relative risks (Richardson et al. (2017) <doi:10.1080/01621459.2016.1192546>), assumption lean inference for generalized linear model parameters (Vansteelandt et al. (2022) <doi:10.1111/rssb.12504>).
Authors:
targeted_0.6.tar.gz
targeted_0.6.zip(r-4.5)targeted_0.6.zip(r-4.4)targeted_0.6.zip(r-4.3)
targeted_0.6.tgz(r-4.4-x86_64)targeted_0.6.tgz(r-4.4-arm64)targeted_0.6.tgz(r-4.3-x86_64)targeted_0.6.tgz(r-4.3-arm64)
targeted_0.6.tar.gz(r-4.5-noble)targeted_0.6.tar.gz(r-4.4-noble)
targeted_0.6.tgz(r-4.4-emscripten)targeted_0.6.tgz(r-4.3-emscripten)
targeted.pdf |targeted.html✨
targeted/json (API)
NEWS
# Install 'targeted' in R: |
install.packages('targeted', repos = c('https://kkholst.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/kkholst/targeted/issues
Pkgdown site:https://kkholst.github.io
causal-inferencedouble-robustestimationsemiparametric-estimationstatisticsopenblascppopenmp
Last updated 9 days agofrom:c8f5d1dc19. Checks:1 OK, 1 NOTE, 7 FAILURE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 21 2025 |
R-4.5-win-x86_64 | OUTDATED | Dec 25 2024 |
R-4.5-linux-x86_64 | NOTE | Jan 21 2025 |
R-4.4-win-x86_64 | OUTDATED | Dec 25 2024 |
R-4.4-mac-x86_64 | OUTDATED | Dec 25 2024 |
R-4.4-mac-aarch64 | OUTDATED | Dec 25 2024 |
R-4.3-win-x86_64 | OUTDATED | Dec 25 2024 |
R-4.3-mac-x86_64 | OUTDATED | Dec 25 2024 |
R-4.3-mac-aarch64 | OUTDATED | Dec 25 2024 |
Exports:aipwaleanatecalibratecalibrationcatecate_linkcrrcvdesignestimate_truncatedscoreexpand.listisoregwMLml_modelNBNB2nondomoffsetspavapredictorpredictor_gampredictor_glmpredictor_glmnetpredictor_grfpredictor_grf_binarypredictor_halpredictor_isoregpredictor_slpredictor_xgboostpredictor_xgboost_binarypredictor_xgboost_countpredictor_xgboost_coxpredictor_xgboost_multiclassRATERATE.survriskregriskreg_censriskreg_fitriskreg_mlescoringSLsoftmaxsolve_odespecialsspecify_ode
Dependencies:clicodetoolsdata.tabledigestfuturefuture.applyglobalslatticelavalistenvMatrixmetsmvtnormnloptrnnlsnumDerivoptimxparallellypracmaprogressrR6RcppRcppArmadillorlangSQUAREMsurvivaltimereg
Average Treatment Effects
Rendered fromate.Rmd
usingknitr::rmarkdown
on Jan 21 2025.Last update: 2025-01-21
Started: 2025-01-21
Conditional Average Treatment Effects (cate)
Rendered fromcate.Rmd
usingknitr::rmarkdown
on Jan 21 2025.Last update: 2025-01-21
Started: 2025-01-21
Estimating a relative risk or risk difference with a binary exposure
Rendered fromriskregression.Rmd
usingknitr::rmarkdown
on Jan 21 2025.Last update: 2025-01-21
Started: 2025-01-21
targeted::ode_solve: Solving Ordinary Differential Equations
Rendered fromode.Rmd
usingknitr::rmarkdown
on Jan 21 2025.Last update: 2025-01-21
Started: 2025-01-21