--- title: "Estimating a relative risk or risk difference with a binary exposure" author: Klaus Kähler Holst date: "`r Sys.Date()`" output: knitr:::html_vignette: fig_caption: yes fig_width: 7.15 fig_height: 5.5 vignette: > %\VignetteIndexEntry{Estimating a relative risk or risk difference with a binary exposure} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, #dev="png", comment = "#>" ) library(lava) ``` Introduction ============ Let \(Y\) be a *binary response*, \(A\) a *binary exposure*, and \(V\) a *vector of covariates*. ![DAG for the statistical model with the dashed edge representing a potential interaction between exposure \(A\) and covariates \(V\).](dag1.svg) In a common setting, the main interest lies in quantifying the treatment effect, \(\nu\), of \(A\) on \(Y\) adjusting for the set of covariates, and often a standard approach is to use a Generalized Linear Model (GLM): \[g\{ E(Y\mid A,V) \} = A\nu^tW + \underset{\mathrm{nuisance}}{\mu^tZ}\] with link function \(g\), and \(W = w(V)\), \(Z= v(V)\) known vector functions of \(V\). The canonical link (logit) leads to nice computational properties (logistic regression) and parameters with an odds-ratio interpretation. But ORs are not *collapsible* even under randomization. For example \[ E(Y\mid X) = E[ E(Y\mid X,Z) \mid X ] = E[\operatorname{expit}( \mu + \alpha X + \beta Z ) \mid X] \neq \operatorname{expit}[\mu + \alpha X + \beta E(Z\mid X)], \] When marginalizing we leave the class of logistic regression. This non-collapsibility makes it hard to interpret odds-ratios and to compare results from *different studies* **Relative risks** (and risk differences) are collapsible and generally considered easier to interpret than odds-ratios. [Richardson et al](https://doi.org/10.1080/01621459.2016.1192546) (JASA, 2017) proposed a regression model for a binary exposures which solves the computational problems and need for parameter contraints that are associated with using for example binomial regression with a log-link function (or identify link for the risk difference) to obtain such parameter estimates. In the following we consider the relative risk as the **target parameter** \[ \mathrm{RR}(v) = \frac{P(Y=1\mid A=1, V=v)}{P(Y=1\mid A=0, V=v)}. \] Let \(p_a(V) = P(Y \mid A=a, V), a\in\{0,1\}\), the idea is then to posit a linear model for \[ \theta(v) = \log \big(RR(v)\big) \], i.e., \[\log \big(RR(v)\big) = \alpha^Tv,\] and a **nuisance model** for the *odds-product* \[ \phi(v) = \log\left(\frac{p_{0}(v)p_{1}(v)}{(1-p_{0}(v))(1-p_{1}(v))}\right) \] noting that these two parameters are *variation independent* as illustrated by the below L'Abbé plot. ```{r, fig.width=5, fig.height=5} p0 <- seq(0,1,length.out=100) p1 <- function(p0,op) 1/(1+(op*(1-p0)/p0)^-1) plot(0, type="n", xlim=c(0,1), ylim=c(0,1), xlab="P(Y=1|A=0)", ylab="P(Y=1|A=1)", main="Constant odds product") for (op in exp(seq(-6,6,by=.25))) lines(p0,p1(p0,op), col="lightblue") ``` ```{r, fig.width=5, fig.height=5, fig.caption=' '} p0 <- seq(0,1,length.out=100) p1 <- function(p0,rr) rr*p0 plot(0, type="n", xlim=c(0,1), ylim=c(0,1), xlab="P(Y=1|A=0)", ylab="P(Y=1|A=1)", main="Constant relative risk") for (rr in exp(seq(-3,3,by=.25))) lines(p0,p1(p0,rr), col="lightblue") ``` Similarly, a model can be constructed for the risk-difference on the following scale \[\theta(v) = \operatorname{arctanh} \big(RD(v)\big).\] Simulation ============ First the `targeted` package is loaded ```{r setup} library(targeted) ``` This automatically imports [lava](https://arxiv.org/abs/1206.3421) [(CRAN)](https://CRAN.R-project.org/package=lava) which we can use to simulate from the Relative-Risk Odds-Product (RR-OP) model. ```{r} m <- lvm(a ~ x, lp.target ~ 1, lp.nuisance ~ x+z) m <- binomial.rr(m, response="y", exposure="a", target.model="lp.target", nuisance.model="lp.nuisance") ``` The `lvm` call first defines the linear predictor for the exposure to be of the form \[\mathrm{LP}_A := \mu_A + \alpha X\] and the linear predictors for the /target parameter/ (relative risk) and the /nuisance parameter/ (odds product) to be of the form \[\mathrm{LP}_{RR} := \mu_{RR},\] \[\mathrm{LP}_{OP} := \mu_{OP} + \beta_x X + \beta_z Z.\] The covariates are by default assumed to be independent and standard normal \(X, Z\sim\mathcal{N}(0,1)\), but their distribution can easily be altered using the `lava::distribution` method. The `binomial.rr` function ```{r} args(binomial.rr) ``` then defines the link functions, i.e., \[\operatorname{logit}(E[A\mid X,Z]) = \mu_A + \alpha X,\] \[\operatorname{log}(E[Y\mid X,Z, A=1]/E[Y\mid X, A=0]) = \mu_{RR},\] \[\operatorname{log}\{p_1(X,Z)p_0(X,Z)/[(1-p_1(X,Z))(1-p_0(X,Z))]\} = \mu_{OP}+\beta_x X + \beta_z Z\] with \(p_a(X,Z)=E(Y\mid A=a,X,Z)\). The risk-difference model with the RD parameter modeled on the \(\operatorname{arctanh}\) scale can be defined similarly using the `binomial.rd` method ```{r} args(binomial.rd) ``` We can inspect the parameter names of the modeled ```{r} coef(m) ``` Here the intercepts of the model are simply given the same name as the variables, such that \(\mu_A\) becomes `a`, and the other regression coefficients are labeled using the "~"-formula notation, e.g., \(\alpha\) becomes `a~x`. Intercepts are by default set to zero and regression parameters set to one in the simulation. Hence to simulate from the model with \((mu_A, \mu_{RR}, \mu_{OP}, \alpha, \beta_x, \beta_z)^T = (-1,1,-2,2,1,1)^T\), we define the parameter vector ``p`` given by ```{r} p <- c('a'=-1, 'lp.target'=1, 'lp.nuisance'=-1, 'a~x'=2) ``` and then simulate from the model using the ``sim`` method ```{r} d <- sim(m, 1e4, p=p, seed=1) head(d) ``` Notice, that in this simulated data the **target parameter** \(\mu_{RR}\) has been set to `lp.target =` `r p['lp.target']`. Estimation ============ MLE ------------ We start by fitting the model using the maximum likelihood estimator. ```{r} args(riskreg_mle) ``` The ``riskreg_mle`` function takes vectors/matrices as input arguments with the response ``y``, exposure ``a``, target parameter design matrix ``x1`` (i.e., the matrix \(W\) at the start of this text), and the nuisance model design matrix ``x2`` (odds product). We first consider the case of a correctly specified model, hence we do not consider any interactions with the exposure for the odds product and simply let ``x1`` be a vector of ones, whereas the design matrix for the log-odds-product depends on both \(X\) and \(Z\) ```{r} x1 <- model.matrix(~1, d) x2 <- model.matrix(~x+z, d) fit1 <- with(d, riskreg_mle(y, a, x1, x2, type="rr")) fit1 ``` The parameters are presented in the same order as the columns of ``x1``and ``x2``, hence the target parameter estimate is in the first row ```{r} estimate(fit1, keep=1) ``` DRE ------------ We next fit the model using a double robust estimator (DRE) which introduces a model for the exposure \(E(A=1\mid V)\) (propensity model). The double-robustness stems from the fact that the this estimator remains consistent in the union model where either the odds-product model or the propensity model is correctly specified. With both models correctly specified the estimator is efficient. ```{r} with(d, riskreg_fit(y, a, target=x1, nuisance=x2, propensity=x2, type="rr")) ``` The usual /formula/-syntax can be applied using the ``riskreg`` function. Here we illustrate the double-robustness by using a *wrong propensity model* but a correct nuisance paramter (odds-product) model: ```{r} riskreg(y~a, nuisance=~x+z, propensity=~z, data=d, type="rr") ``` Or vice-versa ```{r} riskreg(y~a, nuisance=~z, propensity=~x+z, data=d, type="rr") ``` whereas the MLE in this case yields a biased estimate of the relative risk: ```{r} fit2 <- with(d, riskreg_mle(y, a, x1=model.matrix(~1,d), x2=model.matrix(~z, d))) estimate(fit2, keep=1) ``` Interactions ------------ The more general model where \[\log RR(V) = A \alpha^TV\] for a subset \(V\) of the covariates can be estimated using the ``target`` argument: ```{r} fit <- riskreg(y~a, target=~x, nuisance=~x+z, data=d) fit ``` As expected we do not see any evidence of an effect of \(X\) on the relative risk with the 95% confidence limits clearly overlapping zero. Note, that when the ``propensity`` argument is omitted as above, the same design matrix is used for both the odds-product model and the propensity model. Risk-difference ------------ The syntax for fitting the risk-difference model is similar. To illustrate this we simulate some new data from this model ```{r} m2 <- binomial.rd(m, response="y", exposure="a", target.model="lp.target", nuisance.model="lp.nuisance") d2 <- sim(m2, 1e4, p=p) ``` And we can then fit the DRE with the syntax ```{r} riskreg(y~a, nuisance=~x+z, data=d2, type="rd") ``` Influence-function ------------ The DRE is a *regular and asymptotic linear* (RAL) estimator, hence \[\sqrt{n}(\widehat{\alpha}_{\mathrm{DRE}} - \alpha) = \frac{1}{\sqrt{n}}\sum_{i=1}^{n} \phi_{\mathrm{eff}}(Z_{i}) + o_{p}(1)\] where \(Z_i = (Y_i, A_i, V_i), i=1,\ldots,n\) are the i.i.d. observations and \(\phi_{\mathrm{eff}}\) is the *influence function*. The influence function can be extracted using the ``IC`` method ```{r} head(IC(fit)) ``` SessionInfo ============ ```{r} sessionInfo() ```