--- title: "While Alive estimands for Recurrent Events" author: Klaus Holst & Thomas Scheike date: "`r Sys.Date()`" output: rmarkdown::html_vignette: fig_caption: yes fig_width: 7.15 fig_height: 5.5 vignette: > %\VignetteIndexEntry{While Alive estimands for Recurrent Events} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) library(mets) ``` While Alive estimands for Recurrent Events ========================================== We consider two while-alive estimands for recurrent events data \begin{align*} \frac{E(N(D \wedge t))}{E(D \wedge t)} \end{align*} and the mean of the subject specific events per time-unit \begin{align*} E( \frac{N(D \wedge t)}{D \wedge t} ) \end{align*} for two treatment-groups in the case of an RCT. For the laste mean of events per time-unit it has been seen that when the sample size is to great it can improve the finite sample properties to employ a transformation such as $\sqrt$ or cube-root, and thus consider \begin{align*} E( (\frac{N(D \wedge t)}{D \wedge t})^.33 ) \end{align*} ```{r} data(hfaction_cpx12) dtable(hfaction_cpx12,~status) dd <- WA_recurrent(Event(entry,time,status)~treatment+cluster(id),hfaction_cpx12,time=2,death.code=2) summary(dd) dd <- WA_recurrent(Event(entry,time,status)~treatment+cluster(id),hfaction_cpx12,time=2,death.code=2,trans=.333) summary(dd,type="log") ``` We see that the ratio of means are not very different, but that the subject specific mean of events per time-unit shows that those on the active treatment has fewer events per time-unit on average. SessionInfo ============ ```{r} sessionInfo() ```